Announcement

Collapse
No announcement yet.

Oxygen Sensor Information

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Oxygen Sensor Information



    Oxygen Sensor Information



    Comment:


    These procedures are only for self powered conventional sensors. Some very new cars are using a different style sensor that is powered. *Many* Oxygen sensors are replaced that are good to excellent. *Many* people don't know how to test them. They routinely last 50,000 or more miles, and if the engine is in good shape, can last the life of the car.

    What does the O2 sensor do?


    It is the primary measurement device for the fuel control computer in your car to know if the engine is too rich or too lean. The O2 sensor is active anytime it is hot enough, but the computer only uses this information in the closed loop mode. Closed loop is the operating mode where all engine control sensors including the Oxygen sensor are used to get best fuel economy, lowest emissions, and good power.

    Should the O2 sensor be replaced when the sensor light comes on in your car?


    Probably not, but you should test it to make sure it is alive and well. This assumes that the light you see is simply an emissions service reminder light and not a failure light. A reminder light is triggered by a mileage event (20-40,000 miles usually) or something like 2000 key start cycles. EGR dash lights usually fall into the reminder category. Consult your owners manual, auto repair manual, dealer, or repair shop for help on what your light means.

    How do I know if my O2 sensor may be bad?


    If your car has lost several miles per gallon of fuel economy and the usual tune up steps do not improve it. This *is not* a pointer to O2 failure, it just brings up the possibility. Vacuum leaks and ignition problems are common fuel economy destroyers. As mentioned by others, the on board computer may also set one of several failure "codes". If the computer has issued a code pertaining to the O2 sensor, the sensor and it's wiring should be tested. Usually when the sensor is bad, the engine will show some loss of power, and will not seem to respond quickly.

    What will damage my O2 sensor?


    Home or professional auto repairs that have used silicone gasket sealer that is not specifically labeled "Oxygen sensor safe", "Sensor safe", or something similar, if used in an area that is connected to the crankcase. This includes valve covers, oil pan, or nearly any other gasket or seal that controls engine oil. Leaded fuel will ruin the O2 sensor in a short time. If a car is running rich over a long period, the sensor may become plugged up or even destroyed. Just shorting out the sensor output wire will not usually hurt the sensor. This simply grounds the output voltage to zero. Once the wiring is repaired, the circuit operates normally. Undercoating, antifreeze or oil on the *outside* surface of the sensor can kill it. See how does an Oxygen sensor work.

    Will testing the O2 sensor hurt it?


    Almost always, the answer is no. You must be careful to not *apply* voltage to the sensor, but measuring it's output voltage is not harmful. As noted by other posters, a cheap voltmeter will not be accurate, but will cause no damage. This is *not* true if you try to measure the resistance of the sensor. Resistance measurements send voltage into a circuit and check the amount returning.
    1995 Sapphire Blue Mustang GT Convertible, 2006 Storm Red Metallic Mercedes-Benz CLK 350 Cabriolet, 2006 Dark Shadow Gray Ford F250 V10 Supercab 4x4, 2004 Perlite Gray Metallic Mercedes-Benz E320 4Matic, 2002 Burgundy Pearl Suzuki XL-7 Touring, 1971 Spring Green Jeep J4000 Gladiator, 1966 Signal Flare Red Ford Fairlane, to name a few...

  • #2
    Part II

    How does an O2 sensor work?

    An Oxygen sensor is a chemical generator. It is constantly making a comparison between the Oxygen inside the exhaust manifold and air outside the engine. If this comparison shows little or no Oxygen in the exhaust manifold, a voltage is generated. The output of the sensor is usually between 0 and 1.1 volts. All spark combustion engines need the proper air fuel ratio to operate correctly. For gasoline this is 14.7 parts of air to one part of fuel. When the engine has more fuel than needed, all available Oxygen is consumed in the cylinder and gasses leaving through the exhaust contain almost no Oxygen. This sends out a voltage greater than 0.45 volts. If the engine is running lean, all fuel is burned, and the extra Oxygen leaves the cylinder and flows into the exhaust. In this case, the sensor voltage goes lower than 0.45 volts. Usually the output range seen seen is 0.2 to 0.7 volts. The sensor does not begin to generate it's full output until it reaches about 600 degrees F. Prior to this time the sensor is not conductive. It is as if the circuit between the sensor and computer is not complete. The mid point is about 0.45 volts. This is neither rich nor lean. A fully warm O2 sensor *will not spend any time at 0.45 volts*. In many cars, the computer sends out a bias voltage of 0.45 through the O2 sensor wire. If the sensor is not warm, or if the circuit is not complete, the computer picks up a steady 0.45 volts. Since the computer knows this is an "illegal" value, it judges the sensor to not be ready. It remains in open loop operation, and uses all sensors except the O2 to determine fuel delivery. Any time an engine is operated in open loop, it runs somewhat rich and makes more exhaust emissions. This translates into lost power, poor fuel economy and air pollution. The O2 sensor is constantly in a state of transition between high and low voltage. Man****urers call this crossing of the 0.45 volt mark O2 cross counts. The higher the number of O2 cross counts, the better the sensor and other parts of the computer control system are working. It is important to remember that the O2 sensor is comparing the amount of Oxygen inside and outside the engine. If the outside of the sensor should become blocked, or coated with oil, sound insulation, undercoating or antifreeze, (among other things), this comparison is not possible.

    How can I test my O2 sensor?

    They can be tested both in the car and out. If you have a high impedence volt meter, the procedure is fairly simple. It will help you to have some background on the way the sensor does it's job. Read how does an O2 sensor work first.
    1995 Sapphire Blue Mustang GT Convertible, 2006 Storm Red Metallic Mercedes-Benz CLK 350 Cabriolet, 2006 Dark Shadow Gray Ford F250 V10 Supercab 4x4, 2004 Perlite Gray Metallic Mercedes-Benz E320 4Matic, 2002 Burgundy Pearl Suzuki XL-7 Touring, 1971 Spring Green Jeep J4000 Gladiator, 1966 Signal Flare Red Ford Fairlane, to name a few...

    Comment


    • #3
      Part III

      Testing O2 sensors that are installed

      The engine must first be fully warm. If you have a defective thermostat, this test may not be possible due to a minimum temperature required for closed loop operation. Attach the positive lead of a high impedence DC voltmeter to the Oxygen sensor output wire. This wire should remain attached to the computer. You will have to back probe the connection or use a jumper wire to get access. The negative lead should be attached to a good clean ground on the engine block or accessory bracket. Cheap voltmeters will not give accurate results because they load down the circuit and absorb the voltage that they are attempting to measure. A acceptable value is 1,000,000 ohms/volt or more on the DC voltage. Most (if not all) digital voltmeters meet this need. Few (if any) non-powered analog (needle style) voltmeters do. Check the specs for your meter to find out. Set your meter to look for 1 volt DC. Many late model cars use a heated O2 sensor. These have either two or three wires instead of one. Heated sensors will have 12 volts on one lead, ground on the other, and the sensor signal on the third. If you have two or three wires, use a 15 or higher volt scale on the meter until you know which is the sensor output wire. When you turn the key on, do not start the engine. You should see a change in voltage on the meter in most late model cars. If not, check your connections. Next, check your leads to make sure you won't wrap up any wires in the belts, etc. then start the engine. You should run the engine above 2000 rpm for two minutes to warm the O2 sensor and try to get into closed loop. Closed loop operation is indicated by the sensor showing several cross counts per second. It may help to rev the engine between idle and about 3000 rpm several times. The computer recognizes the sensor as hot and active once there are several cross counts. You are looking for voltage to go above and below 0.45 volts. If you see less than 0.2 and more than 0.7 volts and the value changes rapidly, you are through, your sensor is good. If not, is it steady high (> 0.45) near 0.45 or steady low (< 0.45). If the voltage is near the middle, you may not be hot yet. Run the engine above 2000 rpm again. If the reading is steady low, add richness by partially closing the choke or adding some propane through the air intake. Be very careful if you work with any extra gasoline, you can easily be burned or have an explosion. If the voltage now rises above 0.7 to 0.9, and you can change it at will by changing the extra fuel, the O2 sensor is usually good. If the voltage is steady high, create a vacuum leak. Try pulling the PCV valve out of it's hose and letting air enter. You can also use the power brake vacuum supply hose. If this drives the voltage to 0.2 to 0.3 or less and you can control it at will by opening and closing the vacuum leak, the sensor is usually good. If you are not able to make a change either way, stop the engine, unhook the sensor wire from the computer harness, and reattach your voltmeter to the sensor output wire. Repeat the rich and lean steps. If you can't get the sensor voltage to change, and you have a good sensor and ground connection, try heating it once more. Repeat the rich and lean steps. If still no voltage or fixed voltage, you have a bad sensor. If you are not getting a voltage and the car has been running rich lately, the sensor may be carbon fouled. It is sometimes possible to clean a sensor in the car. Do this by unplugging the sensor harness, warming up the engine, and creating a lean condition at about 2000 rpm for 1 or 2 minutes. Create a big enough vacuum leak so that the engine begins to slow down. The extra heat will clean it off if possible. If not, it was dead anyway, no loss. In either case, fix the cause of the rich mixture and retest. If you don't, the new sensor will fail.
      1995 Sapphire Blue Mustang GT Convertible, 2006 Storm Red Metallic Mercedes-Benz CLK 350 Cabriolet, 2006 Dark Shadow Gray Ford F250 V10 Supercab 4x4, 2004 Perlite Gray Metallic Mercedes-Benz E320 4Matic, 2002 Burgundy Pearl Suzuki XL-7 Touring, 1971 Spring Green Jeep J4000 Gladiator, 1966 Signal Flare Red Ford Fairlane, to name a few...

      Comment


      • #4
        Part IV

        Testing O2 sensors on the workbench.

        Use a high impedence DC voltmeter as above. Clamp the sensor in a vice, or use a plier or vice-grip to hold it. Clamp your negative voltmeter lead to the case, and the positive to the output wire. Use a propane torch set to high and the inner blue flame tip to heat the fluted or perforated area of the sensor. You should see a DC voltage of at least 0.6 within 20 seconds. If not, most likely cause is open circuit internally or lead fouling. If OK so far, remove from flame. You should see a drop to under 0.1 volt within 4 seconds. If not likely silicone fouled. If still OK, heat for two full minutes and watch for drops in voltage. Sometimes, the internal connections will open up under heat. This is the same a loose wire and is a failure. If the sensor is OK at this point, and will switch from high to low quickly as you move the flame, the sensor is good. Bear in mind that good or bad is relative, with port fuel injection needing faster information than carbureted systems. ANY O2 sensor that will generate 0.9 volts or more when heated, show 0.1 volts or less within one second of flame removal, AND pass the two minute heat test is good regardless of age. When replacing a sensor, don't miss the opportunity to use the test above on the replacement. This will calibrate your evaluation skills and save you money in the future. There is almost always *no* benefit in replacing an oxygen sensor that will pass the test in the first line of this paragraph.

        Originally written by Rick Kirchhof, Austin, Texas

        I had a hardcopy of this, and just found it in electronic form.
        KevinD
        Last edited by KevinD; May 9, 2005, 08:35 AM.
        1995 Sapphire Blue Mustang GT Convertible, 2006 Storm Red Metallic Mercedes-Benz CLK 350 Cabriolet, 2006 Dark Shadow Gray Ford F250 V10 Supercab 4x4, 2004 Perlite Gray Metallic Mercedes-Benz E320 4Matic, 2002 Burgundy Pearl Suzuki XL-7 Touring, 1971 Spring Green Jeep J4000 Gladiator, 1966 Signal Flare Red Ford Fairlane, to name a few...

        Comment


        • #5
          Home or professional auto repairs that have used silicone gasket sealer that is not specifically labeled "Oxygen sensor safe", "Sensor safe", or something similar, if used in an area that is connected to the crankcase. This includes valve covers, oil pan, or nearly any other gasket or seal that controls engine oil.
          Interesting! I never looked to see if my valve cover gasket sealant was o2 sensor-friendly.

          Good info Kevin. Maybe you can answer my o2 related A/F gauge question then. I have my Autometer a/f gauge spliced in at the ECU, at the proper wire to read the signal from my front o2 sensor. The a/f gauge is not working properly. (no LED's light up unless I accelerate or take my foot off the pedal. Then some LED's will light up for a second or two. At WOT, the sensor has no LEDs lit up). I've replaced my front o2 with 3 others (1 of which I KNOW was good on it's previous car). Regardless, my a/f gauge isn't working how it's supposed to.

          The question: if my REAR o2 is also bad (which it is) would it interfere with the signal coming from the FRONT o2 sensor? Since they both need to be good for this 'closed loop' mode for the ECU to regulate air/fuel properly?
          07 Chevy Cobalt MTX LS - Bone Stock
          94 MTX GT - Some Mods - SOLD!
          94 ATX Base - GIVEN AWAY!
          97 MTX Escort - Flat Tires

          Comment


          • #6
            Originally posted by Vertekal
            The question: if my REAR o2 is also bad (which it is) would it interfere with the signal coming from the FRONT o2 sensor? Since they both need to be good for this 'closed loop' mode for the ECU to regulate air/fuel properly?
            The signal coming from the front O2S will be OK, if the sensor is good. However, if the rear O2S is bad, the car won't go into closed-loop mode: it'll run rich as long as either sensor is bad. So this will affect the readings to the A/F meter.
            KevinD
            1995 Sapphire Blue Mustang GT Convertible, 2006 Storm Red Metallic Mercedes-Benz CLK 350 Cabriolet, 2006 Dark Shadow Gray Ford F250 V10 Supercab 4x4, 2004 Perlite Gray Metallic Mercedes-Benz E320 4Matic, 2002 Burgundy Pearl Suzuki XL-7 Touring, 1971 Spring Green Jeep J4000 Gladiator, 1966 Signal Flare Red Ford Fairlane, to name a few...

            Comment


            • #7
              So it's safe to say that you need TWO good o2 sensors to have an a/f gauge function correctly, even if the a/f gauge is only spliced into ONE of the sensors?
              07 Chevy Cobalt MTX LS - Bone Stock
              94 MTX GT - Some Mods - SOLD!
              94 ATX Base - GIVEN AWAY!
              97 MTX Escort - Flat Tires

              Comment


              • #8
                Originally posted by Vertekal
                So it's safe to say that you need TWO good o2 sensors to have an a/f gauge function correctly, even if the a/f gauge is only spliced into ONE of the sensors?

                KevinD
                1995 Sapphire Blue Mustang GT Convertible, 2006 Storm Red Metallic Mercedes-Benz CLK 350 Cabriolet, 2006 Dark Shadow Gray Ford F250 V10 Supercab 4x4, 2004 Perlite Gray Metallic Mercedes-Benz E320 4Matic, 2002 Burgundy Pearl Suzuki XL-7 Touring, 1971 Spring Green Jeep J4000 Gladiator, 1966 Signal Flare Red Ford Fairlane, to name a few...

                Comment


                • #9
                  Wow, very helpful information.
                  It remains in open loop operation, and uses all sensors except the O2 to determine fuel delivery. Any time an engine is operated in open loop, it runs somewhat rich and makes more exhaust emissions. This translates into lost power, poor fuel economy and air pollution.
                  This is what I think is wrong with my car at the moment. Before I threw 3 codes (incl. Ro2S Inv. Err.).
                  1995 Mx6 LS

                  Comment


                  • #10
                    So just out of curiosity, I ran a wire from my front o2 sensor right to the purple wire of my A/F gauge. The gauge worked fine afterwards.

                    Regardless, this is great o2 info. Maybe a mod can delete my posts and add this to the archive or something?!?
                    07 Chevy Cobalt MTX LS - Bone Stock
                    94 MTX GT - Some Mods - SOLD!
                    94 ATX Base - GIVEN AWAY!
                    97 MTX Escort - Flat Tires

                    Comment


                    • #11
                      Originally posted by Vertekal
                      So just out of curiosity, I ran a wire from my front o2 sensor right to the purple wire of my A/F gauge. The gauge worked fine afterwards.
                      Maybe there was a flakey connection, or you might have grabbed the wrong wire at the PCM (there's a lot of wiring in there, very easy to grab the wrong one).
                      Glad it works now!
                      KevinD
                      Last edited by KevinD; June 1, 2004, 07:25 PM.
                      1995 Sapphire Blue Mustang GT Convertible, 2006 Storm Red Metallic Mercedes-Benz CLK 350 Cabriolet, 2006 Dark Shadow Gray Ford F250 V10 Supercab 4x4, 2004 Perlite Gray Metallic Mercedes-Benz E320 4Matic, 2002 Burgundy Pearl Suzuki XL-7 Touring, 1971 Spring Green Jeep J4000 Gladiator, 1966 Signal Flare Red Ford Fairlane, to name a few...

                      Comment

                      Working...
                      X